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Abstract
Audio source separation comprises the separation of different source sounds from a mixed
signal. The source signals can be slow or fast, varying with similar or contrasting frequency
profiles. To solve this challenging problem, several methods have been proposed that
utilize carefully designed frequency band-splitting (Luo & Yu (2023)) or hybrid time-
frequency domain methods (Rouard et al. (2023)). In this work, we propose to use the
multi-resolution analysis (MRA) capabilities of the Discrete Wavelet Transform (DWT).
DWT processes the signal at several scales by successively reducing the temporal resolution
and extracting the low-frequency approximation and high-frequency details at each scale.

We propose two neural network architectures to leverage the MRA: Wavelet-HTDemucs
(WHTDemucs) and DWT-Transformer-UNet (DTUNet), each designed to enhance the
separation of audio sources. WHTDemucs extends the HTDemucs (Rouard et al. (2023))
model by introducing a third DWT branch, with the frequency branch acting as a
residual bridge between the temporal and DWT branches. Meanwhile, DTUNet adopts a
more simplified architecture, with independent encoders and decoders for MRA signals,
complemented by a single cross-transformer to combine with the temporal branch. A
source-independent post filter is applied to further enhance the output.

We also propose a noise-robust training methodology to tackle the challenge of corrupted
training data, in terms of bleeding and label noise as defined by the MDX challenge (Fabbro
et al. (2023)). We combine several loss functions such as L1 loss, Mixture Consistency
loss (Wisdom et al. (2019)), unsupervised MixIT Loss (Wisdom et al. (2020)), and Mean
Teacher loss (Tarvainen & Valpola (2017)), which are applied in a scheduled manner
throughout the training process. We also use a model trained with the noise-robust
method to filter out corrupt data from the dataset and train smaller models on the cleaned
subsets. Finally, we apply ensembling and blending (Uhlich et al. (2017)) to further boost
the separation performance. We submitted our methods to the SDX 2023 challenge and
achieved 2nd position in the label noise and 3rd in the bleeding leaderboards of the Music
Demixing track. We also achieved 3rd position in the Cinematic Demixing track (Uhlich
et al. (2023)), competition data-only leaderboard.
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